Time: 3 Hours
Total Marks: 100
Note: Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

a.	Find y_{n}, if $\mathrm{y}=x^{2} e^{2 x}$.
b.	If $u(x, y)=\left(x^{3}+x^{3}\right)^{\frac{1}{5}}$, find the value of $x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}$.
c.	If $z=u^{2}+v^{2}, u=r \cos \theta, v=r \sin \theta$ find $\frac{\partial z}{\partial r}$.
d.	Prove that $a^{x}=1+x \log a+\frac{x^{2}}{2!}(\log a)^{2}+\frac{x^{2}}{3!}(\log a)^{3}+\cdots \ldots \ldots \ldots \ldots$.
e.	Reduce the matrix $\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 3 & 1\end{array}\right]$ into normal form.
f.	Find the inverse of the matrix $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$.
g .	Evaluate $\Gamma\left(-\frac{3}{2}\right)$.
h.	Evaluate $\int_{0}^{\pi} \int_{0}^{a \sin \theta} r d r d \theta$.
i.	Show that $\vec{V}=(y+z) \hat{\imath}+(\mathrm{z}+(\hat{l}) \hat{\jmath}+(x+y) \hat{k}$ is solenoidal.
j.	Prove that $\operatorname{div}(\varnothing \vec{a})=\varnothing$ 局 $\vec{a}+(\operatorname{grad} \emptyset) \cdot \vec{a}$

SECTION B

2. Attempt any three of the following:
$10 \times 3=30$

a.	If $y=\left(\sin ^{-1} x\right)^{2}$, show that $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-n^{2} y_{n}=0$ and calculate $y_{n}(0)$.
b.	A rectangular box, open at the top, is to have given capacity. Find the dimensions of the box requiring least material for its construction.
c.	Reduce the matrix $A=\left[\begin{array}{ccc}-1 & 2 & -2 \\ 1 & 2 & 1 \\ -1 & -1\end{array}\right]$ to the diagonal form.
d.	Show that $\iiint \frac{d x d y d z}{(x+y+z)^{3}}=\frac{1}{2} \log 2-\frac{5}{16}$. The integral being taken throughout the bounded by $x=0, y=0, z=0, x+y+z=0$.
e.	Verify Stoke's theorem for $\vec{F}=x^{2} \hat{\imath}+x y \hat{\jmath}$ integrated round the square whose sides are $x=$ $0, y=0, x=a, y$ im the plane $z=0$.

D ownload all N O T E S and PAPE R S at StudentSuvidha.com

SECTION C

3. Attempt any one part of the following:

$10 \times 1=10$

a.	Trace the curve: $x^{3}+y^{3}-3 a x y=0$.
b.	If $u=\frac{x^{3} y^{3} z^{3}}{x^{3}+y^{3}+z^{3}}+\log \left(\frac{x y+y z+z x}{x^{2}+y^{2}+z^{2}}\right)$, then prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}=6 \frac{x^{3} y^{3} z^{3}}{x^{3}+y^{3}+z^{3}}$.

4. Attempt any one part of the following:

$10 \times 1=10$
a. Expand $x^{2} y+3 y-2$ in powers of $(x-1)$ and $(y+2)$ using Taylor's Theorem.
b. If u, v and w are the roots of $(\lambda-x)^{3}+(\lambda-y)^{3}+(\lambda-z)^{3}=0$, cubic in λ, find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$.
5. Attempt any one part of the following:
$10 \times 1=10$

a.	Investigate the values of λ and μ so that the equations $2 x+3 y+5 z=9,7 x+3 y-2 z=8,2 x+3 y+\lambda$ hafe μ (a) no solution, (b) a unique solution and (c) an infinite number of solutions.
b.	Verify Cayley-Hamilton theorem for the matrix $A=\left[\begin{array}{ccc}1 & 2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & -1\end{array}\right]$ and hence find A^{-2}.

6. Attempt any one part of he following:

$$
10 \times 1=10
$$

a.	Find the arc lengthe the curve $y=\sqrt{x}$ from $x=0$ to $x=4$.
b.	Change the order of integration in $I=\int_{0}^{1} \int_{x^{2}}^{2-x} x y d y d x$ and hence evaluate the same.

7. Attempt any one part of the following:
$10 \times 1=10$

a.	Find the directional derivative $\not \subset f\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{1}{2}} \quad$ at the poiRt $(3,1,2)$ in the direction of the vector $y z \hat{\imath}+z x \hat{\jmath}+x y \hat{k}$.
b.	Verify Green's theorem in the plane for $\oint_{C}\left[\left(x^{2}-2 x y\right) d x+\left(x^{2} y+3\right) d y\right]$ where C is the boundary of the region defined by $y^{2}=8 x$ and $x=2$.

