Printed Page: 1 of 2

Page 1 of 2

Download all NOTES and PAPERS at StudentSuvidha.com

Roll No:

BTECH (SEM I) THEORY EXAMINATION 2021-22

ENGINEERING MATHS-I

Time: 3 Hours

Note: Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

a.	Find y_n , if $y = x^2 e^{2x}$.
b.	If $u(x,y) = (x^3 + x^3)^{\frac{1}{5}}$, find the value of $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$.
c.	If $z = u^2 + v^2$, $u = r \cos \theta$, $v = r \sin \theta$ find $\frac{\partial z}{\partial r}$.
d.	Prove that $a^x = 1 + x \log a + \frac{x^2}{2!} (\log a)^2 + \frac{x^2}{3!} (\log a)^3 + \dots \dots \dots$
e.	Reduce the matrix $\begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 1 \end{bmatrix}$ into normal form.
f.	Find the inverse of the matrix $A = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$.
g.	Evaluate $\Gamma\left(-\frac{3}{2}\right)$.
h.	Evaluate $\int_0^{\pi} \int_0^{a \sin \theta} r dr d\theta$.
i.	Show that $\vec{V} = (y+z)\hat{i} + (z+y)\hat{j} + (x+y)\hat{k}$ is solenoidal.
j.	Prove that $div(\emptyset \vec{a}) = \emptyset dv \vec{a} + (grad\emptyset) \cdot \vec{a}$
	SECTION B
2.	Attempt any <i>three</i> of the following: 10x3=30
a.	If $y = (sin^{-1}x)^2$, show that $(1 - x^2)y_{n+2} - (2n + 1)xy_{n+1} - n^2y_n = 0$ and calculate $y_n(0)$.
h	A rectangular box, open at the top, is to have given capacity. Find the dimensions of the box

b. requiring least material for its construction.

c.	Reduce the matrix $A = \begin{bmatrix} -1 & 2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{bmatrix}$ to the diagonal form.	
d.	Show that $\iiint \frac{dxdydz}{(x+y+z)^3} = \frac{1}{2}\log 2 - \frac{5}{16}$. The integral being taken throughout the v bounded by $x = 0, y = 0, z = 0, x + y + z = 0$.	olume
e.	Verify Stoke's theorem for $\vec{F} = x^2\hat{\imath} + xy\hat{\jmath}$ integrated round the square whose sides are $x = 0, y = 0, x = a, y$ in the plane $z = 0$.	

Total Marks: 100

 $2 \ge 10 = 20$

Subject Code: NAS103

Printed Page: 2 of 2 Subject Code: NAS103

10x1 = 10

10x1 = 10

10x1=10

BTECH (SEM I) THEORY EXAMINATION 2021-22 ENGINEERING MATHS-I

Roll No:

SECTION C

3. Attempt any *one* part of the following:

a.	Trace the curve: $x^3 + y^3 - 3axy = 0$.
b.	If $u = \frac{x^3y^3z^3}{x^3+y^3+z^3} + \log\left(\frac{xy+yz+zx}{x^2+y^2+z^2}\right)$, then prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = 6\frac{x^3y^3z^3}{x^3+y^3+z^3}$.

4. Attempt any *one* part of the following:

a. Expand x²y + 3y - 2 in powers of (x - 1) and (y + 2) using Taylor's Theorem. b. If u, v and w are the roots of (λ - x)³ + (λ - y)³ + (λ - z)³ = 0, cubic in λ, find ^{∂(u,v,w)}/_{∂(x,y,z)}.

5. Attempt any *one* part of the following:

a.	Investigate the values of λ and μ so that the equations $2x + 3y + 5z = 9,7x + 3y - 2z = 8,2x + 3y + \lambda zhave \mu$ (a) no solution, (b) a unique solution and (c) an infinite number of solutions.
b.	Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$ and hence find A^{-2} .

6. Attempt any one part of the following:

a.	Find the arc length of the curve $y = \sqrt{x}$ from $x = 0$ to $x = 4$.
b.	Change the order of integration in $I = \int_0^1 \int_{x^2}^{2-x} xy dy dx$ and hence evaluate the same.

7. Attempt any *one* part of the following:

10x1=10

10x1 = 10

a.	Find the directional derivative $\emptyset d = (x^2 + y^2 + z^2)^{-\frac{1}{2}}$ at the point(3,1,2) in the direction of the vector $yz\hat{i} + zx\hat{j} + xy\hat{k}$.
b.	Verify Green's theorem in the plane for $\oint_C [(x^2 - 2xy)dx + (x^2y + 3)dy]$ where <i>C</i> is the boundary of the region defined by $y^2 = 8x$ and $x = 2$.

Page 2 of 2

Download all NOTES and PAPERS at StudentSuvidha.com